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Abstract. We evaluate analytically some ground state properties of two-dimensional harmonically confined
Fermi vapors with isotropy and for an arbitrary number of closed shells. We first derive a differential form
of the virial theorem and an expression for the kinetic energy density in terms of the fermion particle
density and its low-order derivatives. These results allow an explicit differential equation to be obtained
for the particle density. The equation is third-order, linear and homogeneous. We also obtain a relation
between the turning points of kinetic energy and particle densities, and an expression of the non-local
kinetic energy density functional.
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1 Introduction

We have previously studied in detail the ground-
state properties of harmonically confined non-interacting
fermions in one dimension (1D) [1,2], because of cur-
rent interest in experiments on ultracold gases of the 40K
and 6Li fermionic isotopes populating hyperfine states in-
side magnetic traps [3–5]. The s-wave collisions between
fermions in the same hyperfine state are suppressed by the
Pauli principle, while p-wave scattering and dipole-dipole
magnetic interactions are very weak at very low temper-
ature [6]. A one-component gas of Fermi atoms in a fully
spin-polarized state inside a magnetic trap thus is a close
laboratory realization of the ideal non-interacting Fermi
gas in an external harmonic potential, allowing access to
the kinetic energy functional which is invoked in the den-
sity functional theory of inhomogeneous fluids [7].

The current experimental setups are usually based on
axially symmetric magnetic traps with variable aspect ra-
tio. It is thus possible to range from a quasi-1D “cigar-
shaped” trap to a quasi-2D “pancake-shaped” trap [8],
and to the spherical case of a fully isotropic trap. The in-
terest in such experiments has motivated us to study by
essentially analytical methods the extension of the results
of references [1,2] to treat independent fermions with two-
dimensional (2D) isotropic harmonic confinement, for an
arbitrary number of closed shells. The case of 3D isotropic
confinement has been considered in reference [9]. Through-
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out we study singly filled levels because of the experimen-
tal situation involving spin-polarized fermions.

The outline of the paper is then as follows. In Section 2
below, we derive an explicit form of the kinetic energy den-
sity for 2D harmonic confinement for an arbitrary num-
ber of closed shells. In Section 3 a differential form of the
usual integral virial theorem, but now specific to 2D har-
monic confinement, is invoked and this allows the kinetic
energy density result of Section 2 to be rewritten as a dif-
ferential equation for the particle density. Section 4 gives
the derivation of a relation between the turning points
of the kinetic energy and particle densities. This allows
the construction of an explicit form of the kinetic energy
density functional solely in terms of the particle density
and its low-order derivatives. This provides the third ex-
ample – after the homogeneous electron gas and the one-
particle problem presented by the hydrogen atom – for
which the exact functional is derived. Illustrative numer-
ical results are presented in Section 5. The final section
constitutes a summary, together with some proposals for
further studies.

2 Derivation of the relation between average
kinetic energy density and particle density

Three forms of the kinetic energy density are used in
the paper: (i) t(r) = −(~2/2m)

∑
i ψi∇2ψi, (ii) tG(r) =

(~2/2m)
∑
i |∇ψi|2 and (iii) an average of t(r) and tG(r)
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called t̄(r). The quantity 2t̄(r) equals the trace of the ten-
sorial momentum flux density and the difference tG(r) −
t(r) is simply (~2/4m)∇2ρ(r) where ρ(r) is the particle
density. All three kinetic energy densities defined above
lead to the correct total kinetic energy T =

∫
d2r t(r)

etc. A brief reminder of the solution of the Schrödinger
equation for the problem of present interest is given in
Appendix A.

Our starting point is the result for the 2D fermion par-
ticle density in the presence of the harmonic confinement
V (r) = mω2r2/2, as obtained by Brack and van Zyl [10],
namely

ρ(r) =
1

πa2
ho

M∑
µ=0

(M + 1− µ)(−1)µLµ(y) exp(−y/2) (1)

after adaptation to the case of single occupancy of the trap
levels. Here aho = (~/mω)1/2, y = 2(r/aho)2, (M + 1) is
the number of filled shells and Lµ(y) are the Laguerre
polynomials. The average kinetic energy density t̄(r) is
given by [10]

t̄(r) =
~ω

2πa2
ho

M∑
µ=0

(M + 1− µ)2(−1)µLµ(y) exp(−y/2).

(2)

We now define the following summations over the
Laguerre polynomials:

Q
(M+1)
i (y) =

M∑
µ=0

µi(−1)µLµ(y) : i = 0, 1, 2. (3)

Then the particle density and the average kinetic energy
density are readily expressed in the form

ρ(r) =
1

πa2
ho

[
(M + 1)Q(M+1)

0 (y)

−Q(M+1)
1 (y)

]
exp(−y/2) (4)

and

t̄(r) =
~ω

2πa2
ho

[
(M + 1)2Q

(M+1)
0 (y)− 2(M + 1)Q(M+1)

1 (y)

+Q(M+1)
2 (y)

]
exp(−y/2). (5)

The next step is to utilize the differential equation for the
Laguerre polynomials, namely[

y
d2

dy2
+ (1− y)

d
dy

+ µ

]
Lµ(y) = 0. (6)

This is readily shown to lead to the following relations for
the summations Q(M+1)

i (y):[
y

d2

dy2
+ (1− y)

d
dy

]
Q

(M+1)
i (y) +Q

(M+1)
i+1 (y) = 0 (7)

for i = 0 and 1. These allow us to express ρ(r) and t̄(r)
solely in terms of Q(M+1)

0 (y) and of its first two deriva-
tives, leading after some manipulations to the result

t̄(r) =
~ω
2

[
a2

ho

8
∇2ρ(r) +

(
M +

3
2
− r2

2a2
ho

)
ρ(r)

]
. (8)

Equation (8) is one of the central relations for the present
study.

3 Differential equation for fermion particle
density

Having related the kinetic energy density t̄(r) to the par-
ticle density ρ(r) and the potential energy mω2r2/2 in
equation (8), for an arbitrary number of closed shells, we
shall next invoke a differential form of the usual integral
virial theorem. This we write in the form:

∂t̄(r)
∂r

= −ρ(r)
∂V (r)
∂r

· (9)

For the specific case of 2D harmonic confinement with
filled shells, the differential virial theorem (9) can be
proven starting from equations (1, 2) for any given number
of shells. The demonstration is given in Appendix B.

Forming the virial r ·F of the force F, as −r∂V (r)/∂r,
and integrating over 2πrdr we find∫ ∞

0

2πr2 ∂t̄(r)
∂r

dr = 〈r ·F〉 =
∫

d2rρ(r)r
∂V (r)
∂r

· (10)

Integrating the LHS of equation (10) by parts we obtain
2T for the integral value, T being the total kinetic en-
ergy, which confirms that equation (9) contains the inte-
gral virial theorem.

Having established equation (9), we can combine it
with equation (8) relating t̄(r) to V (r) and ρ(r) to obtain
a third-order, linear, homogeneous differential equation for
the particle density ρ(r) for (M + 1) closed shells:

~2

8m
∂
[
∇2ρ(r)

]
∂r

+
[(
M +

3
2

)
~ω − mω2r2

2

]
∂ρ(r)
∂r

+mω2rρ(r) = 0. (11)

As one immediate check of equation (11), it is readily ver-
ified that

ρ(r) = N exp(−r2/a2
ho), (12)

where N is a known (irrelevant for present purposes) nor-
malization factor, satisfies equation (11) for M = 0.

Equation (11) achieves a long-term aim of density func-
tional theory for the present case of 2D harmonic confine-
ment of independent fermions: namely to allow the di-
rect calculation of the particle density from the potential
energy (mω2r2/2 in this case), without recourse to indi-
vidual wave functions. It constitutes the two-dimensional
generalization of the result of Lawes and March [11] for
one-dimensional (1D) harmonic confinement of fermions.
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4 Kinetic energy functional

The first object of the present section is to obtain a re-
lation between t′(r) = ∂t(r)/∂r and ρ′(r) = ∂ρ(r)/∂r for
this isotropic 2D harmonically confined fermion assembly.
The result for 1D harmonic confinement is (see e.g. [2])

t′(x)
ρ′(x)

=
(
N~ω − mω2x2

2

)
· (13)

We first use the definition of t̄(r) and the relation tG(r) =
t(r) + (~2/4m)∇2ρ(r) to obtain

t(r) = t̄(r) − ~2

8m
∇2ρ(r). (14)

After differentiation of equation (14) with respect to r,
the use of the virial theorem (9) and of the differential
equation (11) for ρ(r) allows us to obtain

t′(r)
ρ′(r)

=
(
µ− mω2r2

2

)
, (15)

which is the desired generalization of equation (13) to 2D
harmonic confinement, where the chemical potential for
2D harmonic confinement is µ = (M + 3/2)~ω. Evidently
equation (15) relates directly the turning points of kinetic
energy and particle densities for any chosen number of
closed shells.

Equation (15) allows us to eliminate the presence of
the external potential and to obtain the non-local ki-
netic energy density functional solely in terms of the
particle density and of its low-order derivatives. To this
aim, we first write an equation for the quantity Q(r) =
t′(r)/ρ′(r) by differentiation of equation (15) and by using
equations (9, 14):

∂

∂r

[
Q(r)
ρ(r)

]
=
~2

8m
1

ρ2(r)
∂

∂r
∇2ρ(r). (16)

As a second step, we obtain the function Q(r) by
integration:

Q(r) =
µ

ρ(0)
ρ(r) +

~2

8m
ρ(r)

∫ r

0

ds
1

ρ2(s)
∂

∂s
∇2ρ(s), (17)

the integration constant being fixed by the condition
Q(0) = µ. A further integration and elimination of the
high-order derivatives through integration by parts leads
to the final expression

t(r) =
tW(r)

2

+
[
C +

~2

16m

∫ r

0

ds
[ρ′(s)]2

ρ3(s)

(
2
s

+
3ρ′(s)
ρ(s)

)]
ρ2(r) (18)

where tW(r) = (~2/8m)[ρ′(r)]2/ρ(r) is the von Weizsäcker
“surface” contribution to the kinetic energy density [12]
and the constant C is given by C = µ/(2ρ(0))− (~2/16m)
×(∇2ρ(r))r=0/ρ

2(0). In the second term on the RHS of

Fig. 1. Kinetic energy densities (in units ~ω/a2
ho) as given by

the different definitions in Sections 2 and 4 for a 2D Fermi gas
in isotropic harmonic confinement with 20 filled shells, as func-
tions of the radial coordinate r/aho. Solid line: tG(r), dotted
line: t(r), dashed line: tW(r). The inset shows an enlargement
of the turning point region, in the same units.

equation (18) we recognize the 2D Thomas-Fermi kinetic
energy density functional, as given by tTF = π~2ρ2(r)/m.
By comparing this simple expression with equation (18),
we understand that the role of the non-local functional is
highly non-trivial, leading to the formation of oscillations
along the density profile. This provides a generalization
of the result obtained by March et al. [13] to the 2D har-
monic confinement. By integration of equation (18) over
the system one obtains an explicit expression for the ki-
netic energy functional.

5 Illustrative numerical results

Equations (1, 2) can be employed to numerically evalu-
ate all the ground state properties defined in Section 2.
Typical values for the units of frequency and length in the
experiments on atomic Fermi gases are ω = 2π × 200 s−1

and aho =
√
~/mω ' 3 µm, respectively.

In Figure 1 we plot the exact kinetic energy densities
t(r) and tG(r) for 20 filled shells (M = 19). Different phys-
ical phenomena are described by t(r) and tG(r): while t(r)
is relevant in the context of Density-Functional Theory,
t(r) + tG(r) gives the trace of the momentum flux density
entering the equations of generalized hydrodynamics.

Figure 1 clearly displays the shell structure arising
from single-level occupancy and the spill-out beyond the
Thomas-Fermi radius arising from quantum mechanical
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Fig. 2. Illustration of the differential virial theorem: negative
of ∂t̄(r)/∂r (solid line) and mω2rρ(r) (dots) in units ~ω/a3

ho as
functions of the radial coordinate r/aho, for a 2D Fermi gas in
isotropic harmonic confinement with 20, 15 and 10 filled shells
(from top to bottom).

tunnelling. There is seen to be a tiny negative region of
t(r), whereas tG(r) is by definition everywhere positive.
A negative behaviour in the tails of t(r) was also observed
in the 1D geometry [1]. In the same figure we also show
the von Weizsäcker kinetic energy density tW(r). It is seen
that tW(r) is practically zero until the classically forbidden
region is reached, while well outside the classically allowed
region it eventually merges with tG(r): i.e. tG(r)→ tW(r)
for r greater than the Fermi radius. This property is shown
in the inset of Figure 1. Again, this generalizes a result
which was previously known to be valid only in the 1D
geometry [2].

In Figure 2 the differential virial theorem (9) is illus-
trated in the case of harmonic confinement by comparing
the negative of ∂t̄/∂r with the quantity mω2rρ(r) for var-
ious numbers of filled shells. The shell structure is again
very evident.

6 Summary and proposed future directions

We have derived a set of analytic relations for the ground
state properties of a 2D Fermi gas under harmonic con-
finement, with the proviso that the Fermi particles always
fill (M + 1) closed shells. Our work was aimed mainly at
transforming the description of the system from one given
in terms of wave functions to one which takes as the main
variable the particle density. This procedure, typical of
Density Functional Theory (DFT), is here possible in an
explicit way due to the simplicity of the system.

Five basic equations have been obtained, namely equa-
tions (8, 9, 11, 15, 18). Equation (8) is a differential re-
lation which gives the average kinetic energy density in
terms of the particle density, and equation (9) is a dif-
ferential version of the usual virial theorem. These rela-
tions allow the derivation of equation (11), a third-order
differential equation for the particle density profile as de-
termined by the external confining potential and by the
number of filled shells, and equation (15), a relation be-
tween the turning points of the kinetic energy density and
the particle density. The latter is finally used to obtain
the kinetic energy density functional (18) in terms of the
particle density, which is a main task in DFT.

What seems to us therefore to remain outstanding in
2D is to solve the differential equation (11), hopefully ana-
lytically and without summation over shells. The motiva-
tion for expecting this is the “folklore” that the properties
of a fermion fluid are determined by its highest occupied
level [11]. Of course, the challenge of the three-dimensional
oscillator problem remains as a high priority for further
study.
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Appendix A: Two-dimensional Fermi gas
in harmonic confinement: wave functions
and Dirac density matrix

The Schrödinger equation in 2D reads

− ~
2

2m
∇2ψ +

1
2
mω2r2ψ = εψ. (19)

Using aho ≡ (~/mω)1/2 and ~ω as units of length and
energy, the eigenfunctions of equation (19) are expressed
through the Laguerre polynomials Lmn (r2) as

ψn,m(r, φ) =
(

n!
π(n+m)!

)1/2

rmLmn (r2) e−r
2
eimφ, (20)

in correspondence to the energy eigenvalues

εn,m = 2n+m+ 1. (21)

The various shells are filled by taking all integer values of
n and m which satisfy 2n + m = N , N being the shell
index.
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The “off-diagonal density”, that is the Dirac density
matrix can be immediately written from equation (20) as

n(r, r′) =
1
π

e−(r2+r′2)/2
M∑
N=0

N∑
h=0

(N − h)!
h!

(rr′)2h−N

× L2h−N
N−h (r2)L2h−N

N−h (r′2)e[i(2h−N)(φ−φ′)]. (22)

From this matrix, the density profile ρ(r) for (M + 1)
filled shells is obtained by taking r′ = r, the result being
the same as the one obtained by Brack and van Zyl [10].
Similarly, the kinetic energy density can be directly con-
structed in either the form of t(r) or tG(r) by appropriate
differentiation on the Dirac matrix (22), and afterwards
allowing r′ to tend to r.

Appendix B: Proof of the differential virial
theorem for a 2D harmonically confined Fermi
gas

We demonstrate here equation (9) for the specific case
V (r) = mω2r2/2, which is the one relevant for the present
work. The units aho and ~ω for length and energy are used
throughout.

As a first step, we derive from equations (1, 2) recur-
sion relations for the particle density ρM+1(r) and the
average kinetic energy density t̄M+1(r) of a system with
(M + 1) filled shells in terms of those of a system with M
filled shells. These relations are

ρM+1(r) = ρM (r) +Q
(M+1)
0 (y) exp(−y/2)/π (23)

and

t̄M+1(r) = t̄M (r) + ρM (r) +Q
(M+1)
0 (y) exp(−y/2)/(2π).

(24)

These involve the function Q
(M+1)
0 (y) defined in equa-

tion (3).
We then proceed by induction. The differential virial

theorem is readily proven for the case M = 1 of a singly
occupied shell by direct substitution of the expressions
ρ1(r) = exp(−r2)/π and t̄1(r) = exp(−r2)/2π into equa-
tion (9). Assuming that the theorem holds for M filled
shells, we are left to prove that

∂

∂r

[
ρM+1(r)− e−y/2

2π
Q

(M+1)
0 (y)

]
=

− r e−y/2

π
Q

(M+1)
0 (y). (25)

Physically this means that the theorem holds separately
for each filled shell.

By the use of equation (4) for the density profile, equa-
tion (25) can be rewritten solely in terms of the functions

Q
(M+1)
i (y) with i = 0, 1:

(
M +

1
2

)
∂Q

(M+1)
0 (y)
∂y

− 2MQ
(M+1)
0 (y) =

∂Q
(M+1)
1 (y)
∂y

− 2Q(M+1)
1 (y). (26)

We can now employ the definition of the Laguerre poly-
nomials

Lµ(y) =
µ∑
k=0

(
µ

µ− k

)
(−y)k

k!
(27)

and of the functions Q(M+1)
i (y) to transform equation (26)

into a double sum:

M∑
µ=1

(−1)µ
µ−1∑
k=0

(2M + 1− 2µ)
(

µ
µ− k − 1

)
(−y)k

k!

+
M∑
µ=0

(−1)µ
µ∑
k=0

(M − µ)
(

µ
µ− k

)
(−y)k

k!
= 0. (28)

Exchanging the order of the sums allows us to collect all
terms of the same order in k: each coefficient must then
vanish independently because of the principle of identity
between polynomials. Thus, we have finally to prove the
simplified expression

M−1∑
µ=k

(−1)µ [(2M − 1− 2µ)(µ+ 1)− (M − µ)(k + 1)]

× µ!
(µ− k)!

= 0. (29)

The above finite sum must be shown to yield zero for any
integer value M and k ≤ (M−1). This statement is proven
by applying twice again the reasoning by induction on the
index M : the validity of equation (29) for M = 1 is easily
checked, and assuming that it holds for a fixed M leads
to prove that

M−1∑
µ=k

(−1)µ(2µ− k + 1)
µ!

(µ− k)!
=

(−1)M+1 M !
(M − k − 1)!

· (30)

Applying again induction to the LHS of equation (30)
leads to the proof of its validity, which implies the validity
of the differential virial theorem.
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